Generate Text with Chat Prompt
Previously, you were able to generate text and objects using either a single message prompt, a system prompt, or a combination of both of them. However, there may be times when you want to generate text based on a series of messages.
A chat completion allows you to generate text based on a series of messages. This series of messages can be any series of interactions between any number of systems, but the most popular and relatable use case has been a series of messages that represent a conversation between a user and a model.
Client
Let's start by creating a simple chat interface with an input field that sends the user's message and displays the conversation history. You will call the /api/chat
endpoint to generate the assistant's response.
'use client';
import { CoreMessage } from 'ai';import { useState } from 'react';
export default function Page() { const [input, setInput] = useState(''); const [messages, setMessages] = useState<CoreMessage[]>([]);
return ( <div> <input value={input} onChange={event => { setInput(event.target.value); }} onKeyDown={async event => { if (event.key === 'Enter') { setMessages(currentMessages => [ ...currentMessages, { role: 'user', content: input }, ]);
const response = await fetch('/api/chat', { method: 'POST', body: JSON.stringify({ messages: [...messages, { role: 'user', content: input }], }), });
const { messages: newMessages } = await response.json();
setMessages(currentMessages => [ ...currentMessages, ...newMessages, ]); } }} />
{messages.map((message, index) => ( <div key={`${message.role}-${index}`}> {typeof message.content === 'string' ? message.content : message.content .filter(part => part.type === 'text') .map((part, partIndex) => ( <div key={partIndex}>{part.text}</div> ))} </div> ))} </div> );}
Server
Next, let's create the /api/chat
endpoint that generates the assistant's response based on the conversation history.
import { CoreMessage, generateText } from 'ai';import { openai } from '@ai-sdk/openai';
export async function POST(req: Request) { const { messages }: { messages: CoreMessage[] } = await req.json();
const { responseMessages } = await generateText({ model: openai('gpt-4'), system: 'You are a helpful assistant.', messages, });
return Response.json({ messages: responseMessages });}