Call Tools
Some models allow developers to provide a list of tools that can be called at any time during a generation. This is useful for extending the capabilites of a language model to either use logic or data to interact with systems external to the model.
Client
Let's create a React component that imports the useChat
hook from the ai/react
module. The useChat
hook will call the /api/chat
endpoint when the user sends a message. The endpoint will generate the assistant's response based on the conversation history and stream it to the client. If the assistant responds with a tool call, the hook will automatically display them as well.
We will use the maxSteps
to specify the maximum number of steps (i.e., LLM calls) that can be made to prevent infinite loops. In this example, you will set it to 2
to allow for two backend calls to happen.
'use client';
import { useChat } from 'ai/react';
export default function Page() { const { messages, input, setInput, append } = useChat({ api: '/api/chat', maxSteps: 2, });
return ( <div> <input value={input} onChange={event => { setInput(event.target.value); }} onKeyDown={async event => { if (event.key === 'Enter') { append({ content: input, role: 'user' }); } }} />
{messages.map((message, index) => ( <div key={index}>{message.content}</div> ))} </div> );}
Server
You will create a new route at /api/chat
that will use the streamText
function from the ai
module to generate the assistant's response based on the conversation history.
You will use the tools
parameter to specify a tool called celsiusToFahrenheit
that will convert a user given value in celsius to fahrenheit.
You will also use zod to specify the schema for the celsiusToFahrenheit
function's parameters.
import { ToolInvocation, streamText } from 'ai';import { openai } from '@ai-sdk/openai';import { z } from 'zod';
interface Message { role: 'user' | 'assistant'; content: string; toolInvocations?: ToolInvocation[];}
export async function POST(req: Request) { const { messages }: { messages: Message[] } = await req.json();
const result = streamText({ model: openai('gpt-4o'), system: 'You are a helpful assistant.', messages, tools: { getWeather: { description: 'Get the weather for a location', parameters: z.object({ city: z.string().describe('The city to get the weather for'), unit: z .enum(['C', 'F']) .describe('The unit to display the temperature in'), }), execute: async ({ city, unit }) => { const weather = { value: 24, description: 'Sunny', };
return `It is currently ${weather.value}°${unit} and ${weather.description} in ${city}!`; }, }, }, });
return result.toDataStreamResponse();}