Chatbot Message Persistence
Being able to store and load chat messages is crucial for most AI chatbots.
In this guide, we'll show how to implement message persistence with useChat
and streamText
.
This guide does not cover authorization, error handling, or other real-world considerations. It is intended to be a simple example of how to implement message persistence.
Starting a new chat
When the user navigates to the chat page without providing a chat ID, we need to create a new chat and redirect to the chat page with the new chat ID.
import { redirect } from 'next/navigation';import { createChat } from '@tools/chat-store';
export default async function Page() { const id = await createChat(); // create a new chat redirect(`/chat/${id}`); // redirect to chat page, see below}
Our example chat store implementation uses files to store the chat messages. In a real-world application, you would use a database or a cloud storage service, and get the chat ID from the database. That being said, the function interfaces are designed to be easily replaced with other implementations.
import { generateId } from 'ai';import { existsSync, mkdirSync } from 'fs';import { writeFile } from 'fs/promises';import path from 'path';
export async function createChat(): Promise<string> { const id = generateId(); // generate a unique chat ID await writeFile(getChatFile(id), '[]'); // create an empty chat file return id;}
function getChatFile(id: string): string { const chatDir = path.join(process.cwd(), '.chats'); if (!existsSync(chatDir)) mkdirSync(chatDir, { recursive: true }); return path.join(chatDir, `${id}.json`);}
Loading an existing chat
When the user navigates to the chat page with a chat ID, we need to load the chat messages and display them.
import { loadChat } from '@tools/chat-store';import Chat from '@ui/chat';
export default async function Page(props: { params: Promise<{ id: string }> }) { const { id } = await props.params; // get the chat ID from the URL const messages = await loadChat(id); // load the chat messages return <Chat id={id} initialMessages={messages} />; // display the chat}
The loadChat
function in our file-based chat store is implemented as follows:
import { Message } from 'ai';import { readFile } from 'fs/promises';
export async function loadChat(id: string): Promise<Message[]> { return JSON.parse(await readFile(getChatFile(id), 'utf8'));}
// ... rest of the file
The display component is a simple chat component that uses the useChat
hook to
send and receive messages:
'use client';
import { Message, useChat } from 'ai/react';
export default function Chat({ id, initialMessages,}: { id?: string | undefined; initialMessages?: Message[] } = {}) { const { input, handleInputChange, handleSubmit, messages } = useChat({ id, // use the provided chat ID initialMessages, // initial messages if provided sendExtraMessageFields: true, // send id and createdAt for each message });
// simplified rendering code, extend as needed: return ( <div> {messages.map(m => ( <div key={m.id}> {m.role === 'user' ? 'User: ' : 'AI: '} {m.content} </div> ))}
<form onSubmit={handleSubmit}> <input value={input} onChange={handleInputChange} /> </form> </div> );}
Storing messages
useChat
sends the chat id and the messages to the backend.
We have enabled the sendExtraMessageFields
option to send the id and createdAt fields,
meaning that we store messages in the useChat
message format.
The useChat
message format is different from the CoreMessage
format. The
useChat
message format is designed for frontend display, and contains
additional fields such as id
and createdAt
. We recommend storing the
messages in the useChat
message format.
Storing messages is done in the onFinish
callback of the streamText
function.
onFinish
receives the messages from the AI response as a CoreMessage[]
,
and we use the appendResponseMessages
helper to append the AI response messages to the chat messages.
import { openai } from '@ai-sdk/openai';import { appendResponseMessages, streamText } from 'ai';import { saveChat } from '@tools/chat-store';
export async function POST(req: Request) { const { messages, id } = await req.json();
const result = streamText({ model: openai('gpt-4o-mini'), messages, async onFinish({ response }) { await saveChat({ id, messages: appendResponseMessages({ messages, responseMessages: response.messages, }), }); }, });
return result.toDataStreamResponse();}
The actual storage of the messages is done in the saveChat
function, which in
our file-based chat store is implemented as follows:
import { Message } from 'ai';import { writeFile } from 'fs/promises';
export async function saveChat({ id, messages,}: { id: string; messages: Message[];}): Promise<void> { const content = JSON.stringify(messages, null, 2); await writeFile(getChatFile(id), content);}
// ... rest of the file
Message IDs
In addition to a chat ID, each message has an ID. You can use this message ID to e.g. manipulate individual messages.
The IDs for user messages are generated by the useChat
hook on the client,
and the IDs for AI response messages are generated by streamText
.
You can control the ID format by providing ID generators
(see createIdGenerator()
:
import { createIdGenerator } from 'ai';import { useChat } from 'ai/react';
const { // ...} = useChat({ // ... // id format for client-side messages: generateId: createIdGenerator({ prefix: 'msgc', size: 16, }),});
import { createIdGenerator, streamText } from 'ai';
export async function POST(req: Request) { // ... const result = streamText({ // ... // id format for server-side messages: experimental_generateMessageId: createIdGenerator({ prefix: 'msgs', size: 16, }), }); // ...}
Sending only the last message
Once you have implemented message persistence, you might want to send only the last message to the server. This reduces the amount of data sent to the server on each request and can improve performance.
To achieve this, you can provide an experimental_prepareRequestBody
function to the useChat
hook (React only).
This function receives the messages and the chat ID, and returns the request body to be sent to the server.
import { useChat } from 'ai/react';
const { // ...} = useChat({ // ... // only send the last message to the server: experimental_prepareRequestBody({ messages, id }) { return { message: messages[messages.length - 1], id }; },});
On the server, you can then load the previous messages and append the new message to the previous messages:
export async function POST(req: Request) { // get the last message from the client: const { message, id } = await req.json();
// load the previous messages from the server: const previousMessages = await loadChat(id);
// append the new message to the previous messages: const messages = [...previousMessages, message];
const result = streamText({ // ... messages, });
// ...}