Embeddings
Embeddings are a way to represent words, phrases, or images as vectors in a high-dimensional space. In this space, similar words are close to each other, and the distance between words can be used to measure their similarity.
Embedding a Single Value
The AI SDK provides the embed
function to embed single values, which is useful for tasks such as finding similar words
or phrases or clustering text.
You can use it with embeddings models, e.g. openai.embedding('text-embedding-3-large')
or mistral.embedding('mistral-embed')
.
import { embed } from 'ai';import { openai } from '@ai-sdk/openai';
// 'embedding' is a single embedding object (number[])const { embedding } = await embed({ model: openai.embedding('text-embedding-3-small'), value: 'sunny day at the beach',});
Embedding Many Values
When loading data, e.g. when preparing a data store for retrieval-augmented generation (RAG), it is often useful to embed many values at once (batch embedding).
The AI SDK provides the embedMany
function for this purpose.
Similar to embed
, you can use it with embeddings models,
e.g. openai.embedding('text-embedding-3-large')
or mistral.embedding('mistral-embed')
.
import { openai } from '@ai-sdk/openai';import { embedMany } from 'ai';
// 'embeddings' is an array of embedding objects (number[][]).// It is sorted in the same order as the input values.const { embeddings } = await embedMany({ model: openai.embedding('text-embedding-3-small'), values: [ 'sunny day at the beach', 'rainy afternoon in the city', 'snowy night in the mountains', ],});
Embedding Similarity
After embedding values, you can calculate the similarity between them using the cosineSimilarity
function.
This is useful to e.g. find similar words or phrases in a dataset.
You can also rank and filter related items based on their similarity.
import { openai } from '@ai-sdk/openai';import { cosineSimilarity, embedMany } from 'ai';
const { embeddings } = await embedMany({ model: openai.embedding('text-embedding-3-small'), values: ['sunny day at the beach', 'rainy afternoon in the city'],});
console.log( `cosine similarity: ${cosineSimilarity(embeddings[0], embeddings[1])}`,);
Token Usage
Many providers charge based on the number of tokens used to generate embeddings.
Both embed
and embedMany
provide token usage information in the usage
property of the result object:
import { openai } from '@ai-sdk/openai';import { embed } from 'ai';
const { embedding, usage } = await embed({ model: openai.embedding('text-embedding-3-small'), value: 'sunny day at the beach',});
console.log(usage); // { tokens: 10 }
Embedding Providers & Models
Several providers offer embedding models:
Provider | Model | Embedding Dimensions |
---|---|---|
OpenAI | text-embedding-3-large | 3072 |
OpenAI | text-embedding-3-small | 1536 |
OpenAI | text-embedding-ada-002 | 1536 |
Google Generative AI | text-embedding-004 | 768 |
Mistral | mistral-embed | 1024 |
Cohere | embed-english-v3.0 | 1024 |
Cohere | embed-multilingual-v3.0 | 1024 |
Cohere | embed-english-light-v3.0 | 384 |
Cohere | embed-multilingual-light-v3.0 | 384 |
Cohere | embed-english-v2.0 | 4096 |
Cohere | embed-english-light-v2.0 | 1024 |
Cohere | embed-multilingual-v2.0 | 768 |