Google Generative AI Provider

The Google Generative AI provider contains language and embedding model support for the Google Generative AI APIs.

Setup

The Google provider is available in the @ai-sdk/google module. You can install it with

pnpm
npm
yarn
pnpm add @ai-sdk/google

Provider Instance

You can import the default provider instance google from @ai-sdk/google:

import { google } from '@ai-sdk/google';

If you need a customized setup, you can import createGoogleGenerativeAI from @ai-sdk/google and create a provider instance with your settings:

import { createGoogleGenerativeAI } from '@ai-sdk/google';
const google = createGoogleGenerativeAI({
// custom settings
});

You can use the following optional settings to customize the Google Generative AI provider instance:

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers. The default prefix is https://generativelanguage.googleapis.com/v1beta.

  • apiKey string

    API key that is being sent using the x-goog-api-key header. It defaults to the GOOGLE_GENERATIVE_AI_API_KEY environment variable.

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create models that call the Google Generative AI API using the provider instance. The first argument is the model id, e.g. gemini-1.5-pro-latest. The models support tool calls and some have multi-modal capabilities.

const model = google('gemini-1.5-pro-latest');

You can use fine-tuned models by prefixing the model id with tunedModels/, e.g. tunedModels/my-model.

Google Generative AI models support also some model specific settings that are not part of the standard call settings. You can pass them as an options argument:

const model = google('gemini-1.5-pro-latest', {
safetySettings: [
{ category: 'HARM_CATEGORY_UNSPECIFIED', threshold: 'BLOCK_LOW_AND_ABOVE' },
],
});

The following optional settings are available for Google Generative AI models:

  • cachedContent string

    Optional. The name of the cached content used as context to serve the prediction. Format: cachedContents/{cachedContent}

  • structuredOutputs boolean

    Optional. Enable structured output. Default is true.

    This is useful when the JSON Schema contains elements that are not supported by the OpenAPI schema version that Google Generative AI uses. You can use this to disable structured outputs if you need to.

    See Troubleshooting: Schema Limitations for more details.

  • safetySettings Array<{ category: string; threshold: string }>

    Optional. Safety settings for the model.

    • category string

      The category of the safety setting. Can be one of the following:

      • HARM_CATEGORY_HATE_SPEECH
      • HARM_CATEGORY_DANGEROUS_CONTENT
      • HARM_CATEGORY_HARASSMENT
      • HARM_CATEGORY_SEXUALLY_EXPLICIT
    • threshold string

      The threshold of the safety setting. Can be one of the following:

      • HARM_BLOCK_THRESHOLD_UNSPECIFIED
      • BLOCK_LOW_AND_ABOVE
      • BLOCK_MEDIUM_AND_ABOVE
      • BLOCK_ONLY_HIGH
      • BLOCK_NONE

You can use Google Generative AI language models to generate text with the generateText function:

import { google } from '@ai-sdk/google';
import { generateText } from 'ai';
const { text } = await generateText({
model: google('gemini-1.5-pro-latest'),
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
});

Google Generative AI language models can also be used in the streamText, generateObject, streamObject, and streamUI functions (see AI SDK Core and AI SDK RSC).

File Inputs

The Google Generative AI provider supports file inputs, e.g. PDF files.

import { google } from '@ai-sdk/google';
import { generateText } from 'ai';
const result = await generateText({
model: google('gemini-1.5-flash'),
messages: [
{
role: 'user',
content: [
{
type: 'text',
text: 'What is an embedding model according to this document?',
},
{
type: 'file',
data: fs.readFileSync('./data/ai.pdf'),
mimeType: 'application/pdf',
},
],
},
],
});

The AI SDK will automatically download URLs if you pass them as data, except for https://generativelanguage.googleapis.com/v1beta/files/. You can use the Google Generative AI Files API to upload larger files to that location.

See File Parts for details on how to use files in prompts.

Cached Content

You can use Google Generative AI language models to cache content:

import { google } from '@ai-sdk/google';
import { GoogleAICacheManager } from '@google/generative-ai/server';
import { generateText } from 'ai';
const cacheManager = new GoogleAICacheManager(
process.env.GOOGLE_GENERATIVE_AI_API_KEY,
);
// As of August 23rd, 2024, these are the only models that support caching
type GoogleModelCacheableId =
| 'models/gemini-1.5-flash-001'
| 'models/gemini-1.5-pro-001';
const model: GoogleModelCacheableId = 'models/gemini-1.5-pro-001';
const { name: cachedContent } = await cacheManager.create({
model,
contents: [
{
role: 'user',
parts: [{ text: '1000 Lasanga Recipes...' }],
},
],
ttlSeconds: 60 * 5,
});
const { text: veggieLasangaRecipe } = await generateText({
model: google(model, { cachedContent }),
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
});
const { text: meatLasangaRecipe } = await generateText({
model: google(model, { cachedContent }),
prompt: 'Write a meat lasagna recipe for 12 people.',
});

Search Grounding

With search grounding, the model has access to the latest information using Google search. Search grounding can be used to provide answers around current events:

import { google } from '@ai-sdk/google';
import { GoogleGenerativeAIProviderMetadata } from '@ai-sdk/google';
import { generateText } from 'ai';
const { text, experimental_providerMetadata } = await generateText({
model: google('gemini-1.5-pro', {
useSearchGrounding: true,
}),
prompt:
'List the top 5 San Francisco news from the past week.' +
'You must include the date of each article.',
});
// access the grounding metadata. Casting to the provider metadata type
// is optional but provides autocomplete and type safety.
const metadata = experimental_providerMetadata?.google as
| GoogleGenerativeAIProviderMetadata
| undefined;
const groundingMetadata = metadata?.groundingMetadata;
const safetyRatings = metadata?.safetyRatings;

The grounding metadata includes detailed information about how search results were used to ground the model's response. Here are the available fields:

  • webSearchQueries (string[] | null)

    • Array of search queries used to retrieve information
    • Example: ["What's the weather in Chicago this weekend?"]
  • searchEntryPoint ({ renderedContent: string } | null)

    • Contains the main search result content used as an entry point
    • The renderedContent field contains the formatted content
  • groundingSupports (Array of support objects | null)

    • Contains details about how specific response parts are supported by search results
    • Each support object includes:
      • segment: Information about the grounded text segment
        • text: The actual text segment
        • startIndex: Starting position in the response
        • endIndex: Ending position in the response
      • groundingChunkIndices: References to supporting search result chunks
      • confidenceScores: Confidence scores (0-1) for each supporting chunk

Example response:

{
"groundingMetadata": {
"webSearchQueries": ["What's the weather in Chicago this weekend?"],
"searchEntryPoint": {
"renderedContent": "..."
},
"groundingSupports": [
{
"segment": {
"startIndex": 0,
"endIndex": 65,
"text": "Chicago weather changes rapidly, so layers let you adjust easily."
},
"groundingChunkIndices": [0],
"confidenceScores": [0.99]
}
]
}
}

The safety ratings provide insight into how the model's response was grounded to search results. See Google AI documentation on safety settings.

Example response excerpt:

{
"safetyRatings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability": "NEGLIGIBLE",
"probabilityScore": 0.11027937,
"severity": "HARM_SEVERITY_LOW",
"severityScore": 0.28487435
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability": "HIGH",
"blocked": true,
"probabilityScore": 0.95422274,
"severity": "HARM_SEVERITY_MEDIUM",
"severityScore": 0.43398145
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability": "NEGLIGIBLE",
"probabilityScore": 0.11085559,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severityScore": 0.19027223
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability": "NEGLIGIBLE",
"probabilityScore": 0.22901751,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severityScore": 0.09089675
}
]
}

The Google Generative AI provider does not yet support dynamic retrieval mode and threshold.

Troubleshooting

Schema Limitations

The Google Generative AI API uses a subset of the OpenAPI 3.0 schema, which does not support features such as unions. The errors that you get in this case look like this:

GenerateContentRequest.generation_config.response_schema.properties[occupation].type: must be specified

By default, structured outputs are enabled (and for tool calling they are required). You can disable structured outputs for object generation as a workaround:

const result = await generateObject({
model: google('gemini-1.5-pro-latest', {
structuredOutputs: false,
}),
schema: z.object({
name: z.string(),
age: z.number(),
contact: z.union([
z.object({
type: z.literal('email'),
value: z.string(),
}),
z.object({
type: z.literal('phone'),
value: z.string(),
}),
]),
}),
prompt: 'Generate an example person for testing.',
});

The following Zod features are known to not work with Google Generative AI:

  • z.union
  • z.record

Model Capabilities

ModelImage InputObject GenerationTool UsageTool Streaming
gemini-2.0-flash-exp
gemini-1.5-pro-latest
gemini-1.5-pro
gemini-1.5-flash-latest
gemini-1.5-flash

The table above lists popular models. Please see the Google Generative AI docs for a full list of available models. The table above lists popular models. You can also pass any available provider model ID as a string if needed.

Embedding Models

You can create models that call the Google Generative AI embeddings API using the .textEmbeddingModel() factory method.

const model = google.textEmbeddingModel('text-embedding-004');

Google Generative AI embedding models support aditional settings. You can pass them as an options argument:

const model = google.textEmbeddingModel('text-embedding-004', {
outputDimensionality: 512, // optional, number of dimensions for the embedding
});

The following optional settings are available for Google Generative AI embedding models:

  • outputDimensionality: number

    Optional reduced dimension for the output embedding. If set, excessive values in the output embedding are truncated from the end.

Model Capabilities

ModelDefault DimensionsCustom Dimensions
text-embedding-004768