Google Vertex Provider

The Google Vertex provider for the AI SDK contains language model support for the Google Vertex AI APIs. This includes support for Google's Gemini models and Anthropic's Claude partner models.

The Google Vertex provider is compatible with both Node.js and Edge runtimes. The Edge runtime is supported through the @ai-sdk/google-vertex/edge sub-module. More details can be found in the Google Vertex Edge Runtime and Google Vertex Anthropic Edge Runtime sections below.

Setup

The Google Vertex and Google Vertex Anthropic providers are both available in the @ai-sdk/google-vertex module. You can install it with

pnpm
npm
yarn
pnpm add @ai-sdk/google-vertex

Google Vertex Provider Usage

The Google Vertex provider instance is used to create model instances that call the Vertex AI API. The models available with this provider include Google's Gemini models. If you're looking to use Anthropic's Claude models, see the Google Vertex Anthropic Provider section below.

Provider Instance

You can import the default provider instance vertex from @ai-sdk/google-vertex:

import { vertex } from '@ai-sdk/google-vertex';

If you need a customized setup, you can import createVertex from @ai-sdk/google-vertex and create a provider instance with your settings:

import { createVertex } from '@ai-sdk/google-vertex';
const vertex = createVertex({
project: 'my-project', // optional
location: 'us-central1', // optional
});

Google Vertex supports two different authentication implementations depending on your runtime environment.

Node.js Runtime

The Node.js runtime is the default runtime supported by the AI SDK. It supports all standard Google Cloud authentication options through the google-auth-library. Typical use involves setting a path to a json credentials file in the GOOGLE_APPLICATION_CREDENTIALS environment variable. The credentials file can be obtained from the Google Cloud Console.

If you want to customize the Google authentication options you can pass them as options to the createVertex function, for example:

import { createVertex } from '@ai-sdk/google-vertex';
const vertex = createVertex({
googleAuthOptions: {
credentials: {
client_email: 'my-email',
private_key: 'my-private-key',
},
},
});
Optional Provider Settings

You can use the following optional settings to customize the provider instance:

  • project string

    The Google Cloud project ID that you want to use for the API calls. It uses the GOOGLE_VERTEX_PROJECT environment variable by default.

  • location string

    The Google Cloud location that you want to use for the API calls, e.g. us-central1. It uses the GOOGLE_VERTEX_LOCATION environment variable by default.

  • googleAuthOptions object

    Optional. The Authentication options used by the Google Auth Library. See also the GoogleAuthOptions interface.

    • authClient object An AuthClient to use.

    • keyFilename string Path to a .json, .pem, or .p12 key file.

    • keyFile string Path to a .json, .pem, or .p12 key file.

    • credentials object Object containing client_email and private_key properties, or the external account client options.

    • clientOptions object Options object passed to the constructor of the client.

    • scopes string | string[] Required scopes for the desired API request.

    • projectId string Your project ID.

    • universeDomain string The default service domain for a given Cloud universe.

  • headers Resolvable<Record<string, string | undefined>>

    Headers to include in the requests. Can be provided in multiple formats:

    • A record of header key-value pairs: Record<string, string | undefined>
    • A function that returns headers: () => Record<string, string | undefined>
    • An async function that returns headers: async () => Record<string, string | undefined>
    • A promise that resolves to headers: Promise<Record<string, string | undefined>>
  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

  • baseURL string

    Optional. Base URL for the Google Vertex API calls e.g. to use proxy servers. By default, it is constructed using the location and project: https://${location}-aiplatform.googleapis.com/v1/projects/${project}/locations/${location}/publishers/google

Edge Runtime

Edge runtimes (like Vercel Edge Functions and Cloudflare Workers) are lightweight JavaScript environments that run closer to users at the network edge. They only provide a subset of the standard Node.js APIs. For example, direct file system access is not available, and many Node.js-specific libraries (including the standard Google Auth library) are not compatible.

The Edge runtime version of the Google Vertex provider supports Google's Application Default Credentials through environment variables. The values can be obtained from a json credentials file from the Google Cloud Console.

You can import the default provider instance vertex from @ai-sdk/google-vertex/edge:

import { vertex } from '@ai-sdk/google-vertex/edge';

The /edge sub-module is included in the @ai-sdk/google-vertex package, so you don't need to install it separately. You must import from @ai-sdk/google-vertex/edge to differentiate it from the Node.js provider.

If you need a customized setup, you can import createVertex from @ai-sdk/google-vertex/edge and create a provider instance with your settings:

import { createVertex } from '@ai-sdk/google-vertex/edge';
const vertex = createVertex({
project: 'my-project', // optional
location: 'us-central1', // optional
});

For Edge runtime authentication, you'll need to set these environment variables from your Google Default Application Credentials JSON file:

  • GOOGLE_CLIENT_EMAIL
  • GOOGLE_PRIVATE_KEY
  • GOOGLE_PRIVATE_KEY_ID (optional)

These values can be obtained from a service account JSON file from the Google Cloud Console.

Optional Provider Settings

You can use the following optional settings to customize the provider instance:

  • project string

    The Google Cloud project ID that you want to use for the API calls. It uses the GOOGLE_VERTEX_PROJECT environment variable by default.

  • location string

    The Google Cloud location that you want to use for the API calls, e.g. us-central1. It uses the GOOGLE_VERTEX_LOCATION environment variable by default.

  • googleCredentials object

    Optional. The credentials used by the Edge provider for authentication. These credentials are typically set through environment variables and are derived from a service account JSON file.

    • clientEmail string The client email from the service account JSON file. Defaults to the contents of the GOOGLE_CLIENT_EMAIL environment variable.

    • privateKey string The private key from the service account JSON file. Defaults to the contents of the GOOGLE_PRIVATE_KEY environment variable.

    • privateKeyId string The private key ID from the service account JSON file (optional). Defaults to the contents of the GOOGLE_PRIVATE_KEY_ID environment variable.

  • headers Resolvable<Record<string, string | undefined>>

    Headers to include in the requests. Can be provided in multiple formats:

    • A record of header key-value pairs: Record<string, string | undefined>
    • A function that returns headers: () => Record<string, string | undefined>
    • An async function that returns headers: async () => Record<string, string | undefined>
    • A promise that resolves to headers: Promise<Record<string, string | undefined>>
  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create models that call the Vertex API using the provider instance. The first argument is the model id, e.g. gemini-1.5-pro.

const model = vertex('gemini-1.5-pro');

If you are using your own models, the name of your model needs to start with projects/.

Google Vertex models support also some model specific settings that are not part of the standard call settings. You can pass them as an options argument:

const model = vertex('gemini-1.5-pro', {
safetySettings: [
{ category: 'HARM_CATEGORY_UNSPECIFIED', threshold: 'BLOCK_LOW_AND_ABOVE' },
],
});

The following optional settings are available for Google Vertex models:

  • structuredOutputs boolean

    Optional. Enable structured output. Default is true.

    This is useful when the JSON Schema contains elements that are not supported by the OpenAPI schema version that Google Vertex uses. You can use this to disable structured outputs if you need to.

    See Troubleshooting: Schema Limitations for more details.

  • safetySettings Array<{ category: string; threshold: string }>

    Optional. Safety settings for the model.

    • category string

      The category of the safety setting. Can be one of the following:

      • HARM_CATEGORY_UNSPECIFIED
      • HARM_CATEGORY_HATE_SPEECH
      • HARM_CATEGORY_DANGEROUS_CONTENT
      • HARM_CATEGORY_HARASSMENT
      • HARM_CATEGORY_SEXUALLY_EXPLICIT
      • HARM_CATEGORY_CIVIC_INTEGRITY
    • threshold string

      The threshold of the safety setting. Can be one of the following:

      • HARM_BLOCK_THRESHOLD_UNSPECIFIED
      • BLOCK_LOW_AND_ABOVE
      • BLOCK_MEDIUM_AND_ABOVE
      • BLOCK_ONLY_HIGH
      • BLOCK_NONE
  • useSearchGrounding boolean

    Optional. When enabled, the model will use Google search to ground the response.

  • audioTimestamp boolean

    Optional. Enables timestamp understanding for audio files. Defaults to false.

    This is useful for generating transcripts with accurate timestamps. Consult Google's Documentation for usage details.

You can use Google Vertex language models to generate text with the generateText function:

import { vertex } from '@ai-sdk/google-vertex';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertex('gemini-1.5-pro'),
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
});

Google Vertex language models can also be used in the streamText and streamUI functions (see AI SDK Core and AI SDK RSC).

File Inputs

The Google Vertex provider supports file inputs, e.g. PDF files.

import { vertex } from '@ai-sdk/google-vertex';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertex('gemini-1.5-pro'),
messages: [
{
role: 'user',
content: [
{
type: 'text',
text: 'What is an embedding model according to this document?',
},
{
type: 'file',
data: fs.readFileSync('./data/ai.pdf'),
mimeType: 'application/pdf',
},
],
},
],
});

The AI SDK will automatically download URLs if you pass them as data, except for gs:// URLs. You can use the Google Cloud Storage API to upload larger files to that location.

See File Parts for details on how to use files in prompts.

Search Grounding

With search grounding, the model has access to the latest information using Google search. Search grounding can be used to provide answers around current events:

import { vertex } from '@ai-sdk/google-vertex';
import { GoogleGenerativeAIProviderMetadata } from '@ai-sdk/google';
import { generateText } from 'ai';
const { text, experimental_providerMetadata } = await generateText({
model: vertex('gemini-1.5-pro', {
useSearchGrounding: true,
}),
prompt:
'List the top 5 San Francisco news from the past week.' +
'You must include the date of each article.',
});
// access the grounding metadata. Casting to the provider metadata type
// is optional but provides autocomplete and type safety.
const metadata = experimental_providerMetadata?.google as
| GoogleGenerativeAIProviderMetadata
| undefined;
const groundingMetadata = metadata?.groundingMetadata;
const safetyRatings = metadata?.safetyRatings;

The grounding metadata includes detailed information about how search results were used to ground the model's response. Here are the available fields:

  • webSearchQueries (string[] | null)

    • Array of search queries used to retrieve information
    • Example: ["What's the weather in Chicago this weekend?"]
  • searchEntryPoint ({ renderedContent: string } | null)

    • Contains the main search result content used as an entry point
    • The renderedContent field contains the formatted content
  • groundingSupports (Array of support objects | null)

    • Contains details about how specific response parts are supported by search results
    • Each support object includes:
      • segment: Information about the grounded text segment
        • text: The actual text segment
        • startIndex: Starting position in the response
        • endIndex: Ending position in the response
      • groundingChunkIndices: References to supporting search result chunks
      • confidenceScores: Confidence scores (0-1) for each supporting chunk

Example response excerpt:

{
"groundingMetadata": {
"retrievalQueries": ["What's the weather in Chicago this weekend?"],
"searchEntryPoint": {
"renderedContent": "..."
},
"groundingSupports": [
{
"segment": {
"startIndex": 0,
"endIndex": 65,
"text": "Chicago weather changes rapidly, so layers let you adjust easily."
},
"groundingChunkIndices": [0],
"confidenceScores": [0.99]
}
]
}
}

The safety ratings provide insight into how the model's response was grounded to search results. See Google Vertex AI documentation on configuring safety filters.

Example response excerpt:

{
"safetyRatings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability": "NEGLIGIBLE",
"probabilityScore": 0.11027937,
"severity": "HARM_SEVERITY_LOW",
"severityScore": 0.28487435
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability": "HIGH",
"blocked": true,
"probabilityScore": 0.95422274,
"severity": "HARM_SEVERITY_MEDIUM",
"severityScore": 0.43398145
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability": "NEGLIGIBLE",
"probabilityScore": 0.11085559,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severityScore": 0.19027223
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability": "NEGLIGIBLE",
"probabilityScore": 0.22901751,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severityScore": 0.09089675
}
]
}

The Google Vertex provider does not yet support dynamic retrieval mode and threshold.

For more details, see the Google Vertex AI documentation on grounding with Google Search.

Troubleshooting

Schema Limitations

The Google Vertex API uses a subset of the OpenAPI 3.0 schema, which does not support features such as unions. The errors that you get in this case look like this:

GenerateContentRequest.generation_config.response_schema.properties[occupation].type: must be specified

By default, structured outputs are enabled (and for tool calling they are required). You can disable structured outputs for object generation as a workaround:

const result = await generateObject({
model: vertex('gemini-1.5-pro', {
structuredOutputs: false,
}),
schema: z.object({
name: z.string(),
age: z.number(),
contact: z.union([
z.object({
type: z.literal('email'),
value: z.string(),
}),
z.object({
type: z.literal('phone'),
value: z.string(),
}),
]),
}),
prompt: 'Generate an example person for testing.',
});

The following Zod features are known to not work with Google Vertex:

  • z.union
  • z.record

Model Capabilities

ModelImage InputObject GenerationTool UsageTool Streaming
gemini-2.0-flash-exp
gemini-1.5-flash
gemini-1.5-pro

The table above lists popular models. Please see the Google Vertex AI docs for a full list of available models. The table above lists popular models. You can also pass any available provider model ID as a string if needed.

Embedding Models

You can create models that call the Google Vertex AI embeddings API using the .textEmbeddingModel() factory method:

const model = vertex.textEmbeddingModel('text-embedding-004');

Google Vertex AI embedding models support additional settings. You can pass them as an options argument:

const model = vertex.textEmbeddingModel('text-embedding-004', {
outputDimensionality: 512, // optional, number of dimensions for the embedding
});

The following optional settings are available for Google Vertex AI embedding models:

  • outputDimensionality: number

    Optional reduced dimension for the output embedding. If set, excessive values in the output embedding are truncated from the end.

Model Capabilities

ModelMax Values Per CallParallel Calls
text-embedding-0042048

The table above lists popular models. You can also pass any available provider model ID as a string if needed.

Image Models

You can create Imagen models that call the Imagen on Vertex AI API using the .image() factory method. For more on image generation with the AI SDK see generateImage().

import { vertex } from '@ai-sdk/google-vertex';
import { experimental_generateImage as generateImage } from 'ai';
const { image } = await generateImage({
model: vertex.image('imagen-3.0-generate-001'),
prompt: 'A futuristic cityscape at sunset',
aspectRatio: '16:9',
});

Imagen models do not support the size parameter. Use the aspectRatio parameter instead.

Model Capabilities

ModelAspect Ratios
imagen-3.0-generate-0011:1, 3:4, 4:3, 9:16, 16:9
imagen-3.0-fast-generate-0011:1, 3:4, 4:3, 9:16, 16:9

Google Vertex Anthropic Provider Usage

The Google Vertex Anthropic provider for the AI SDK offers support for Anthropic's Claude models through the Google Vertex AI APIs. This section provides details on how to set up and use the Google Vertex Anthropic provider.

Provider Instance

You can import the default provider instance vertexAnthropic from @ai-sdk/google-vertex/anthropic:

import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic';

If you need a customized setup, you can import createVertexAnthropic from @ai-sdk/google-vertex/anthropic and create a provider instance with your settings:

import { createVertexAnthropic } from '@ai-sdk/google-vertex/anthropic';
const vertexAnthropic = createVertexAnthropic({
project: 'my-project', // optional
location: 'us-central1', // optional
});

Node.js Runtime

For Node.js environments, the Google Vertex Anthropic provider supports all standard Google Cloud authentication options through the google-auth-library. You can customize the authentication options by passing them to the createVertexAnthropic function:

import { createVertexAnthropic } from '@ai-sdk/google-vertex/anthropic';
const vertexAnthropic = createVertexAnthropic({
googleAuthOptions: {
credentials: {
client_email: 'my-email',
private_key: 'my-private-key',
},
},
});
Optional Provider Settings

You can use the following optional settings to customize the Google Vertex Anthropic provider instance:

  • project string

    The Google Cloud project ID that you want to use for the API calls. It uses the GOOGLE_VERTEX_PROJECT environment variable by default.

  • location string

    The Google Cloud location that you want to use for the API calls, e.g. us-central1. It uses the GOOGLE_VERTEX_LOCATION environment variable by default.

  • googleAuthOptions object

    Optional. The Authentication options used by the Google Auth Library. See also the GoogleAuthOptions interface.

    • authClient object An AuthClient to use.

    • keyFilename string Path to a .json, .pem, or .p12 key file.

    • keyFile string Path to a .json, .pem, or .p12 key file.

    • credentials object Object containing client_email and private_key properties, or the external account client options.

    • clientOptions object Options object passed to the constructor of the client.

    • scopes string | string[] Required scopes for the desired API request.

    • projectId string Your project ID.

    • universeDomain string The default service domain for a given Cloud universe.

  • headers Resolvable<Record<string, string | undefined>>

    Headers to include in the requests. Can be provided in multiple formats:

    • A record of header key-value pairs: Record<string, string | undefined>
    • A function that returns headers: () => Record<string, string | undefined>
    • An async function that returns headers: async () => Record<string, string | undefined>
    • A promise that resolves to headers: Promise<Record<string, string | undefined>>
  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Edge Runtime

Edge runtimes (like Vercel Edge Functions and Cloudflare Workers) are lightweight JavaScript environments that run closer to users at the network edge. They only provide a subset of the standard Node.js APIs. For example, direct file system access is not available, and many Node.js-specific libraries (including the standard Google Auth library) are not compatible.

The Edge runtime version of the Google Vertex Anthropic provider supports Google's Application Default Credentials through environment variables. The values can be obtained from a json credentials file from the Google Cloud Console.

For Edge runtimes, you can import the provider instance from @ai-sdk/google-vertex/anthropic/edge:

import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic/edge';

To customize the setup, use createVertexAnthropic from the same module:

import { createVertexAnthropic } from '@ai-sdk/google-vertex/anthropic/edge';
const vertexAnthropic = createVertexAnthropic({
project: 'my-project', // optional
location: 'us-central1', // optional
});

For Edge runtime authentication, set these environment variables from your Google Default Application Credentials JSON file:

  • GOOGLE_CLIENT_EMAIL
  • GOOGLE_PRIVATE_KEY
  • GOOGLE_PRIVATE_KEY_ID (optional)
Optional Provider Settings

You can use the following optional settings to customize the provider instance:

  • project string

    The Google Cloud project ID that you want to use for the API calls. It uses the GOOGLE_VERTEX_PROJECT environment variable by default.

  • location string

    The Google Cloud location that you want to use for the API calls, e.g. us-central1. It uses the GOOGLE_VERTEX_LOCATION environment variable by default.

  • googleCredentials object

    Optional. The credentials used by the Edge provider for authentication. These credentials are typically set through environment variables and are derived from a service account JSON file.

    • clientEmail string The client email from the service account JSON file. Defaults to the contents of the GOOGLE_CLIENT_EMAIL environment variable.

    • privateKey string The private key from the service account JSON file. Defaults to the contents of the GOOGLE_PRIVATE_KEY environment variable.

    • privateKeyId string The private key ID from the service account JSON file (optional). Defaults to the contents of the GOOGLE_PRIVATE_KEY_ID environment variable.

  • headers Resolvable<Record<string, string | undefined>>

    Headers to include in the requests. Can be provided in multiple formats:

    • A record of header key-value pairs: Record<string, string | undefined>
    • A function that returns headers: () => Record<string, string | undefined>
    • An async function that returns headers: async () => Record<string, string | undefined>
    • A promise that resolves to headers: Promise<Record<string, string | undefined>>
  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create models that call the Anthropic Messages API using the provider instance. The first argument is the model id, e.g. claude-3-haiku-20240307. Some models have multi-modal capabilities.

const model = anthropic('claude-3-haiku-20240307');

You can use Anthropic language models to generate text with the generateText function:

import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic';
import { generateText } from 'ai';
const { text } = await generateText({
model: vertexAnthropic('claude-3-haiku-20240307'),
prompt: 'Write a vegetarian lasagna recipe for 4 people.',
});

Anthropic language models can also be used in the streamText, generateObject, and streamObject functions (see AI SDK Core and AI SDK RSC).

The Anthropic API returns streaming tool calls all at once after a delay. This causes the streamObject function to generate the object fully after a delay instead of streaming it incrementally.

Cache Control

Anthropic cache control is in a Pre-Generally Available (GA) state on Google Vertex. For more see Google Vertex Anthropic cache control documentation.

In the messages and message parts, you can use the experimental_providerMetadata property to set cache control breakpoints. You need to set the anthropic property in the experimental_providerMetadata object to { cacheControl: { type: 'ephemeral' } } to set a cache control breakpoint.

The cache creation input tokens are then returned in the experimental_providerMetadata object for generateText and generateObject, again under the anthropic property. When you use streamText or streamObject, the response contains a promise that resolves to the metadata. Alternatively you can receive it in the onFinish callback.

import { vertexAnthropic } from '@ai-sdk/google-vertex/anthropic';
import { generateText } from 'ai';
const errorMessage = '... long error message ...';
const result = await generateText({
model: vertexAnthropic('claude-3-5-sonnet-20240620'),
messages: [
{
role: 'user',
content: [
{ type: 'text', text: 'You are a JavaScript expert.' },
{
type: 'text',
text: `Error message: ${errorMessage}`,
experimental_providerMetadata: {
anthropic: { cacheControl: { type: 'ephemeral' } },
},
},
{ type: 'text', text: 'Explain the error message.' },
],
},
],
});
console.log(result.text);
console.log(result.experimental_providerMetadata?.anthropic);
// e.g. { cacheCreationInputTokens: 2118, cacheReadInputTokens: 0 }

You can also use cache control on system messages by providing multiple system messages at the head of your messages array:

const result = await generateText({
model: vertexAnthropic('claude-3-5-sonnet-20240620'),
messages: [
{
role: 'system',
content: 'Cached system message part',
experimental_providerMetadata: {
anthropic: { cacheControl: { type: 'ephemeral' } },
},
},
{
role: 'system',
content: 'Uncached system message part',
},
{
role: 'user',
content: 'User prompt',
},
],
});

For more on prompt caching with Anthropic, see Google Vertex AI's Claude prompt caching documentation and Anthropic's Cache Control documentation.

Computer Use

Anthropic provides three built-in tools that can be used to interact with external systems:

  1. Bash Tool: Allows running bash commands.
  2. Text Editor Tool: Provides functionality for viewing and editing text files.
  3. Computer Tool: Enables control of keyboard and mouse actions on a computer.

They are available via the tools property of the provider instance.

For more background see Anthropic's Computer Use documentation.

Bash Tool

The Bash Tool allows running bash commands. Here's how to create and use it:

const bashTool = vertexAnthropic.tools.bash_20241022({
execute: async ({ command, restart }) => {
// Implement your bash command execution logic here
// Return the result of the command execution
},
});

Parameters:

  • command (string): The bash command to run. Required unless the tool is being restarted.
  • restart (boolean, optional): Specifying true will restart this tool.

Text Editor Tool

The Text Editor Tool provides functionality for viewing and editing text files:

const textEditorTool = vertexAnthropic.tools.textEditor_20241022({
execute: async ({
command,
path,
file_text,
insert_line,
new_str,
old_str,
view_range,
}) => {
// Implement your text editing logic here
// Return the result of the text editing operation
},
});

Parameters:

  • command ('view' | 'create' | 'str_replace' | 'insert' | 'undo_edit'): The command to run.
  • path (string): Absolute path to file or directory, e.g. /repo/file.py or /repo.
  • file_text (string, optional): Required for create command, with the content of the file to be created.
  • insert_line (number, optional): Required for insert command. The line number after which to insert the new string.
  • new_str (string, optional): New string for str_replace or insert commands.
  • old_str (string, optional): Required for str_replace command, containing the string to replace.
  • view_range (number[], optional): Optional for view command to specify line range to show.

Computer Tool

The Computer Tool enables control of keyboard and mouse actions on a computer:

const computerTool = vertexAnthropic.tools.computer_20241022({
displayWidthPx: 1920,
displayHeightPx: 1080,
displayNumber: 0, // Optional, for X11 environments
execute: async ({ action, coordinate, text }) => {
// Implement your computer control logic here
// Return the result of the action
// Example code:
switch (action) {
case 'screenshot': {
// multipart result:
return {
type: 'image',
data: fs
.readFileSync('./data/screenshot-editor.png')
.toString('base64'),
};
}
default: {
console.log('Action:', action);
console.log('Coordinate:', coordinate);
console.log('Text:', text);
return `executed ${action}`;
}
}
},
// map to tool result content for LLM consumption:
experimental_toToolResultContent(result) {
return typeof result === 'string'
? [{ type: 'text', text: result }]
: [{ type: 'image', data: result.data, mimeType: 'image/png' }];
},
});

Parameters:

  • action ('key' | 'type' | 'mouse_move' | 'left_click' | 'left_click_drag' | 'right_click' | 'middle_click' | 'double_click' | 'screenshot' | 'cursor_position'): The action to perform.
  • coordinate (number[], optional): Required for mouse_move and left_click_drag actions. Specifies the (x, y) coordinates.
  • text (string, optional): Required for type and key actions.

These tools can be used in conjunction with the claude-3-5-sonnet-v2@20241022 model to enable more complex interactions and tasks.

Model Capabilities

The latest Anthropic model list on Vertex AI is available here. See also Anthropic Model Comparison.

ModelImage InputObject GenerationTool UsageTool StreamingComputer Use
claude-3-5-sonnet-v2@20241022
claude-3-5-sonnet@20240620
claude-3-5-haiku@20241022
claude-3-sonnet@20240229
claude-3-haiku@20240307
claude-3-opus@20240229

The table above lists popular models. You can also pass any available provider model ID as a string if needed.