SambaNova Provider

sambanova-ai-provider contains language model support for the SambaNova API.

API keys can be obtained from the SambaNova Cloud Platform.

Setup

The SambaNova provider is available via the sambanova-ai-provider module. You can install it with:

pnpm
npm
yarn
pnpm add sambanova-ai-provider

Environment variables

Create a .env file with a SAMBANOVA_API_KEY variable.

Provider Instance

You can import the default provider instance sambanova from sambanova-ai-provider:

import { sambanova } from 'sambanova-ai-provider';

If you need a customized setup, you can import createSambaNova from sambanova-ai-provider and create a provider instance with your settings:

import { createSambaNova } from 'sambanova-ai-provider';
const sambanova = createSambaNova({
// Optional settings
});

You can use the following optional settings to customize the SambaNova provider instance:

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers. The default prefix is https://api.sambanova.ai/v1.

  • apiKey string

    API key that is being sent using the Authorization header. It defaults to the SAMBANOVA_API_KEY environment variable.

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. Defaults to the global fetch function. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Models

You can use SambaNova models on a provider instance. The first argument is the model id, e.g. Meta-Llama-3.1-70B-Instruct.

const model = sambanova('Meta-Llama-3.1-70B-Instruct');

Tested models and capabilities

This provider is capable of generating and streaming text, and interpreting image inputs.

At least it has been tested with the following features (which use the /chat/completion endpoint):

Chat completionImage input

Image input

You need to use any of the following models for visual understanding:

  • Llama3.2-11B-Vision-Instruct
  • Llama3.2-90B-Vision-Instruct

SambaNova does not support URLs, but the ai-sdk is able to download the file and send it to the model.

Example Usage

Basic demonstration of text generation using the SambaNova provider.

import { createSambaNova } from 'sambanova-ai-provider';
import { generateText } from 'ai';
const sambanova = createSambaNova({
apiKey: 'YOUR_API_KEY',
});
const model = sambanova('Meta-Llama-3.1-70B-Instruct');
const { text } = await generateText({
model,
prompt: 'Hello, nice to meet you.',
});
console.log(text);

You will get an output text similar to this one:

Hello. Nice to meet you too. Is there something I can help you with or would you like to chat?

Intercepting Fetch Requests

This provider supports Intercepting Fetch Requests.

Example

import { createSambaNova } from 'sambanova-ai-provider';
import { generateText } from 'ai';
const sambanovaProvider = createSambaNova({
apiKey: 'YOUR_API_KEY',
fetch: async (url, options) => {
console.log('URL', url);
console.log('Headers', JSON.stringify(options.headers, null, 2));
console.log(`Body ${JSON.stringify(JSON.parse(options.body), null, 2)}`);
return await fetch(url, options);
},
});
const model = sambanovaProvider('Meta-Llama-3.1-70B-Instruct');
const { text } = await generateText({
model,
prompt: 'Hello, nice to meet you.',
});

And you will get an output like this:

URL https://api.sambanova.ai/v1/chat/completions
Headers {
"Content-Type": "application/json",
"Authorization": "Bearer YOUR_API_KEY"
}
Body {
"model": "Meta-Llama-3.1-70B-Instruct",
"temperature": 0,
"messages": [
{
"role": "user",
"content": "Hello, nice to meet you."
}
]
}