Laminar observability

Laminar is an open-source platform for engineering LLM products.

Laminar features:

A version of this guide is available in Laminar's docs.

Setup

Laminar's tracing is based on OpenTelemetry. It supports AI SDK telemetry.

To start with Laminar's tracing, first install the @lmnr-ai/lmnr package.

pnpm
npm
yarn
pnpm add @lmnr-ai/lmnr

Then, either sign up on Laminar or self-host an instance (github) and create a new project. In the project settings, create and copy the API key.

Then, initialize tracing in your application:

import { Laminar } from '@lmnr-ai/lmnr';
Laminar.initialize({
projectApiKey: '...',
});

This must be done once in your application, for example in its entry point. Read more in Laminar docs.

Next.js

In Next.js, Laminar initialization should be done in instrumentation.{ts,js}:

export async function register() {
// prevent this from running in the edge runtime
if (process.env.NEXT_RUNTIME === 'nodejs') {
const { Laminar } = await import('@lmnr-ai/lmnr');
Laminar.initialize({
projectApiKey: process.env.LMNR_API_KEY,
});
}
}

Then, if you call AI SDK functions in any of your API routes, calls will be traced.

// /api/.../route.ts
import { openai } from '@ai-sdk/openai';
import { generateText } from 'ai';
const { text } = await generateText({
model: openai('gpt-4o-mini'),
prompt: 'What is Laminar flow?',
experimental_telemetry: {
isEnabled: true,
},
});

If you are using 13.4 ≤ Next.js < 15, you will also need to enable the experimental instrumentation hook. Place the following in your next.config.js:

module.exports = {
experimental: {
instrumentationHook: true,
},
};

In Next.js projects, Laminar will only trace AI SDK calls to reduce noise.

For more information, see Laminar's Next.js guide and Next.js instrumentation docs. You can also learn how to enable all traces for Next.js in the docs.

Configuration

Now enable experimentalTelemetry in your generateText call:

import { openai } from '@ai-sdk/openai';
import { generateText } from 'ai';
const { text } = await generateText({
model: openai('gpt-4o-mini'),
prompt: 'What is Laminar flow?',
experimental_telemetry: {
isEnabled: true,
},
});

This will create spans for ai.generateText. Laminar collects and displays the following information:

  • LLM call input and output
  • Start and end time
  • Duration / latency
  • Provider and model used
  • Input and output tokens
  • Input and output price
  • Additional metadata and span attributes

Nested spans

If you want to trace not just the AI SDK calls, but also other functions in your application, you can use Laminar's observe wrapper.

import { observe } from '@lmnr-ai/lmnr';
const result = await observe({ name: 'my-function' }, async () => {
// ... some work
await generateText({
//...
});
// ... some work
});

This will create a span with the name "my-function" and trace the function call. Inside it, you will see the nested ai.generateText spans.

To trace input arguments of the fuction that you wrap in observe, pass them to the wrapper as additional arguments. The return value of the function will be returned from the wrapper and traced as the span's output.

const result = await observe(
{ name: 'poem writer' },
async (topic: string, mood: string) => {
const { text } = await generateText({
model: openai('gpt-4o-mini'),
prompt: `Write a poem about ${topic} in ${mood} mood.`,
});
return text;
},
'Laminar flow',
'happy',
);

Metadata

In Laminar, metadata is set on the trace level. Metadata contains key-value pairs and can be used to filter traces.

import { Laminar } from '@lmnr-ai/lmnr';
const { text } = await generateText({
model: openai('gpt-4o-mini'),
prompt: `Write a poem about Laminar flow.`,
experimental_telemetry: {
isEnabled: true,
metadata: {
'my-key': 'my-value',
'another-key': 'another-value',
},
},
});

This is converted to Laminar's metadata and stored in the trace.

Labels

You can add labels to your spans to make them easier to filter. In Laminar, unlike free-form metadata, labels must be pre-defined from Laminar's UI and the label values set in code must match the label values defined in Laminar.

import { withLabels } from '@lmnr-ai/lmnr';
withLabels({ myLabel: 'someValue' }, async () => {
// ...
});

Read more about labels and more free-form metadata in Laminar's metadata docs.