Amazon Bedrock Provider
The Amazon Bedrock provider for the AI SDK contains language model support for the Amazon Bedrock APIs.
Setup
The Bedrock provider is available in the @ai-sdk/amazon-bedrock
module. You can install it with
pnpm add @ai-sdk/amazon-bedrock
Prerequisites
Access to Amazon Bedrock foundation models isn't granted by default. In order to gain access to a foundation model, an IAM user with sufficient permissions needs to request access to it through the console. Once access is provided to a model, it is available for all users in the account.
See the Model Access Docs for more information.
Authentication
Step 1: Creating AWS Access Key and Secret Key
To get started, you'll need to create an AWS access key and secret key. Here's how:
Login to AWS Management Console
- Go to the AWS Management Console and log in with your AWS account credentials.
Create an IAM User
- Navigate to the IAM dashboard and click on "Users" in the left-hand navigation menu.
- Click on "Create user" and fill in the required details to create a new IAM user.
- Make sure to select "Programmatic access" as the access type.
- The user account needs the
AmazonBedrockFullAccess
policy attached to it.
Create Access Key
- Click on the "Security credentials" tab and then click on "Create access key".
- Click "Create access key" to generate a new access key pair.
- Download the
.csv
file containing the access key ID and secret access key.
Step 2: Configuring the Access Key and Secret Key
Within your project add a .env
file if you don't already have one. This file will be used to set the access key and secret key as environment variables. Add the following lines to the .env
file:
AWS_ACCESS_KEY_ID=YOUR_ACCESS_KEY_IDAWS_SECRET_ACCESS_KEY=YOUR_SECRET_ACCESS_KEYAWS_REGION=YOUR_REGION
Remember to replace YOUR_ACCESS_KEY_ID
, YOUR_SECRET_ACCESS_KEY
, and YOUR_REGION
with the actual values from your AWS account.
Provider Instance
You can import the default provider instance bedrock
from @ai-sdk/amazon-bedrock
:
import { bedrock } from '@ai-sdk/amazon-bedrock';
If you need a customized setup, you can import createAmazonBedrock
from @ai-sdk/amazon-bedrock
and create a provider instance with your settings:
import { createAmazonBedrock } from '@ai-sdk/amazon-bedrock';
const bedrock = createAmazonBedrock({ region: 'us-east-1', accessKeyId: 'xxxxxxxxx', secretAccessKey: 'xxxxxxxxx', sessionToken: 'xxxxxxxxx',});
// or with bedrockOptionsconst bedrock = createAmazonBedrock({ bedrockOptions: { region: 'us-east-1', credentials: { // ... }, },});
The top level credentials settings below fall back to environment variable
defaults. These may be set by your serverless environment without your
awareness, which can lead to merged/conflicting credential values and provider
errors around failed authentication. If you're experiencing issues try (1)
using the bedrockOptions
object as it will take precedence over the other
settings and does not inherit environment variable values, or (2) explicitly
specifying all settings (even if undefined
) to avoid any defaults.
You can use the following optional settings to customize the Amazon Bedrock provider instance:
-
region string
The AWS region that you want to use for the API calls. It uses the
AWS_REGION
environment variable by default. -
accessKeyId string
The AWS access key ID that you want to use for the API calls. It uses the
AWS_ACCESS_KEY_ID
environment variable by default. -
secretAccessKey string
The AWS secret access key that you want to use for the API calls. It uses the
AWS_SECRET_ACCESS_KEY
environment variable by default. -
sessionToken string
Optional. The AWS session token that you want to use for the API calls. It uses the
AWS_SESSION_TOKEN
environment variable by default. -
bedrockOptions object
Optional. The configuration options used by the Amazon Bedrock Library (
BedrockRuntimeClientConfig
), including:-
region string The AWS region that you want to use for the API calls.
-
credentials object The AWS credentials that you want to use for the API calls.
When
bedrockOptions
are provided, theregion
,accessKeyId
, andsecretAccessKey
settings are ignored. -
Language Models
You can create models that call the Bedrock API using the provider instance.
The first argument is the model id, e.g. meta.llama3-70b-instruct-v1:0
.
const model = bedrock('meta.llama3-70b-instruct-v1:0');
Amazon Bedrock models also support some model specific settings that are not part of the standard call settings. You can pass them as an options argument:
const model = bedrock('anthropic.claude-3-sonnet-20240229-v1:0', { additionalModelRequestFields: { top_k: 350 },});
Documentation for additional settings based on the selected model can be found within the Amazon Bedrock Inference Parameter Documentation.
You can use Amazon Bedrock language models to generate text with the generateText
function:
import { bedrock } from '@ai-sdk/amazon-bedrock';import { generateText } from 'ai';
const { text } = await generateText({ model: bedrock('meta.llama3-70b-instruct-v1:0'), prompt: 'Write a vegetarian lasagna recipe for 4 people.',});
Amazon Bedrock language models can also be used in the streamText
function
(see AI SDK Core).
File Inputs
Amazon Bedrock supports file inputs on in combination with specific models,
e.g. anthropic.claude-3-haiku-20240307-v1:0
.
The Amazon Bedrock provider supports file inputs, e.g. PDF files.
import { bedrock } from '@ai-sdk/amazon-bedrock';import { generateText } from 'ai';
const result = await generateText({ model: bedrock('anthropic.claude-3-haiku-20240307-v1:0'), messages: [ { role: 'user', content: [ { type: 'text', text: 'Describe the pdf in detail.' }, { type: 'file', data: fs.readFileSync('./data/ai.pdf'), mimeType: 'application/pdf', }, ], }, ],});
Guardrails
You can use the bedrock
provider metadata to utilize Amazon Bedrock Guardrails:
const result = await generateText({ bedrock('anthropic.claude-3-sonnet-20240229-v1:0'), experimental_providerMetadata: { bedrock: { guardrailConfig: { guardrailIdentifier: '1abcd2ef34gh', guardrailVersion: '1', trace: 'enabled' as const, streamProcessingMode: 'async', }, }, },});
Tracing information will be returned in the provider metadata if you have tracing enabled.
if (result.experimental_providerMetadata?.bedrock.trace) { // ...}
See the Amazon Bedrock Guardrails documentation for more information.
Model Capabilities
Note: This model list is ever changing and may not be complete. Refer to the Amazon Bedrock documentation for up to date information.
Model | Image Input | Object Generation | Tool Usage | Tool Streaming |
---|---|---|---|---|
amazon.titan-tg1-large | ||||
amazon.titan-text-express-v1 | ||||
anthropic.claude-3-5-sonnet-20241022-v2:0 | ||||
anthropic.claude-3-5-sonnet-20240620-v1:0 | ||||
anthropic.claude-3-5-haiku-20241022-v1:0 | ||||
anthropic.claude-3-opus-20240229-v1:0 | ||||
anthropic.claude-3-sonnet-20240229-v1:0 | ||||
anthropic.claude-3-haiku-20240307-v1:0 | ||||
anthropic.claude-v2:1 | ||||
cohere.command-r-v1:0 | ||||
cohere.command-r-plus-v1:0 | ||||
meta.llama2-13b-chat-v1 | ||||
meta.llama2-70b-chat-v1 | ||||
meta.llama3-8b-instruct-v1:0 | ||||
meta.llama3-70b-instruct-v1:0 | ||||
mistral.mistral-7b-instruct-v0:2 | ||||
mistral.mixtral-8x7b-instruct-v0:1 | ||||
mistral.mistral-large-2402-v1:0 | ||||
mistral.mistral-small-2402-v1:0 |
The table above lists popular models. You can also pass any available provider model ID as a string if needed.
Embedding Models
You can create models that call the Bedrock API Bedrock API
using the .embedding()
factory method.
const model = bedrock.embedding('amazon.titan-embed-text-v1');
Bedrock Titan embedding model amazon.titan-embed-text-v2:0 supports several aditional settings. You can pass them as an options argument:
const model = bedrock.embedding('amazon.titan-embed-text-v2:0', { dimensions: 512 // optional, number of dimensions for the embedding normalize: true // optional normalize the output embeddings})
The following optional settings are available for Bedrock Titan embedding models:
-
dimensions: number
The number of dimensions the output embeddings should have. The following values are accepted: 1024 (default), 512, 256.
-
normalize boolean
Flag indicating whether or not to normalize the output embeddings. Defaults to true.
Model Capabilities
Model | Default Dimensions | Custom Dimensions |
---|---|---|
amazon.titan-embed-text-v1 | 1024 | |
amazon.titan-embed-text-v2:0 | 1024 |