Writing a Custom Provider
You can create your own provider package that leverages the AI SDK's OpenAI Compatible package. Publishing your provider package to npm can give users an easy way to use the provider's models and stay up to date with any changes you may have. Here's an example structure:
File Structure
packages/example/├── src/│ ├── example-chat-settings.ts # Chat model types and settings│ ├── example-completion-settings.ts # Completion model types and settings│ ├── example-embedding-settings.ts # Embedding model types and settings│ ├── example-provider.ts # Main provider implementation│ ├── example-provider.test.ts # Provider tests│ └── index.ts # Public exports├── package.json├── tsconfig.json├── tsup.config.ts # Build configuration└── README.md
Key Files
- example-chat-settings.ts - Define chat model IDs and settings:
import { OpenAICompatibleChatSettings } from '@ai-sdk/openai-compatible';
export type ExampleChatModelId = | 'example/chat-model-1' | 'example/chat-model-2' | (string & {});
export interface ExampleChatSettings extends OpenAICompatibleChatSettings { // Add any custom settings here}
The completion and embedding settings are implemented similarly to the chat settings.
- example-provider.ts - Main provider implementation:
import { LanguageModelV1, EmbeddingModelV1 } from '@ai-sdk/provider';import { OpenAICompatibleChatLanguageModel, OpenAICompatibleCompletionLanguageModel, OpenAICompatibleEmbeddingModel,} from '@ai-sdk/openai-compatible';import { FetchFunction, loadApiKey, withoutTrailingSlash,} from '@ai-sdk/provider-utils';// Import your model id and settings here.
export interface ExampleProviderSettings { /**Example API key.*/ apiKey?: string; /**Base URL for the API calls.*/ baseURL?: string; /**Custom headers to include in the requests.*/ headers?: Record<string, string>; /**Optional custom url query parameters to include in request urls.*/ queryParams?: Record<string, string>; /**Custom fetch implementation. You can use it as a middleware to intercept requests,or to provide a custom fetch implementation for e.g. testing.*/ fetch?: FetchFunction;}
export interface ExampleProvider { /**Creates a model for text generation.*/ ( modelId: ExampleChatModelId, settings?: ExampleChatSettings, ): LanguageModelV1;
/**Creates a chat model for text generation.*/ chatModel( modelId: ExampleChatModelId, settings?: ExampleChatSettings, ): LanguageModelV1;
/**Creates a completion model for text generation.*/ completionModel( modelId: ExampleCompletionModelId, settings?: ExampleCompletionSettings, ): LanguageModelV1;
/**Creates a text embedding model for text generation.*/ textEmbeddingModel( modelId: ExampleEmbeddingModelId, settings?: ExampleEmbeddingSettings, ): EmbeddingModelV1<string>;}
export function createExample( options: ExampleProviderSettings = {},): ExampleProvider { const baseURL = withoutTrailingSlash( options.baseURL ?? 'https://api.example.com/v1', ); const getHeaders = () => ({ Authorization: `Bearer ${loadApiKey({ apiKey: options.apiKey, environmentVariableName: 'EXAMPLE_API_KEY', description: 'Example API key', })}`, ...options.headers, });
interface CommonModelConfig { provider: string; url: ({ path }: { path: string }) => string; headers: () => Record<string, string>; fetch?: FetchFunction; }
const getCommonModelConfig = (modelType: string): CommonModelConfig => ({ provider: `example.${modelType}`, url: ({ path }) => { const url = new URL(`${baseURL}${path}`); if (options.queryParams) { url.search = new URLSearchParams(options.queryParams).toString(); } return url.toString(); }, headers: getHeaders, fetch: options.fetch, });
const createChatModel = ( modelId: ExampleChatModelId, settings: ExampleChatSettings = {}, ) => { return new OpenAICompatibleChatLanguageModel(modelId, settings, { ...getCommonModelConfig('chat'), defaultObjectGenerationMode: 'tool', }); };
const createCompletionModel = ( modelId: ExampleCompletionModelId, settings: ExampleCompletionSettings = {}, ) => new OpenAICompatibleCompletionLanguageModel( modelId, settings, getCommonModelConfig('completion'), );
const createTextEmbeddingModel = ( modelId: ExampleEmbeddingModelId, settings: ExampleEmbeddingSettings = {}, ) => new OpenAICompatibleEmbeddingModel( modelId, settings, getCommonModelConfig('embedding'), );
const provider = ( modelId: ExampleChatModelId, settings?: ExampleChatSettings, ) => createChatModel(modelId, settings);
provider.completionModel = createCompletionModel; provider.chatModel = createChatModel; provider.textEmbeddingModel = createTextEmbeddingModel;
return provider as ExampleProvider;}
// Export default instanceexport const example = createExample();
- index.ts - Public exports:
export { createExample, example } from './example-provider';export type { ExampleProvider, ExampleProviderSettings,} from './example-provider';
- package.json - Package configuration:
{ "name": "@company-name/example", "version": "0.0.1", "dependencies": { "@ai-sdk/openai-compatible": "^0.0.7", "@ai-sdk/provider": "^1.0.2", "@ai-sdk/provider-utils": "^2.0.4", // ...additional dependencies }, // ...additional scripts and module build configuration}
Usage
Once published, users can use your provider like this:
import { example } from '@company-name/example';import { generateText } from 'ai';
const { text } = await generateText({ model: example('example/chat-model-1'), prompt: 'Hello, how are you?',});
This structure provides a clean, type-safe implementation that leverages the OpenAI Compatible package while maintaining consistency with the usage of other AI SDK providers.
Internal API
As you work on your provider you may need to use some of the internal API of the OpenAI Compatible package. You can import these from the @ai-sdk/openai-compatible/internal
package, for example:
import { convertToOpenAICompatibleChatMessages } from '@ai-sdk/openai-compatible/internal';
You can see the latest available exports in the AI SDK GitHub repository.