Legacy ProvidersAWS Bedrock

AWS Bedrock

Vercel AI SDK provides a set of utilities to make it easy to use AWS Bedrocks's API. In this guide, we'll walk through how to use the utilities to create a chat bot.

Guide: Chat Bot

Create a Next.js app

Create a Next.js application and install ai:

pnpm dlx create-next-app my-ai-app
cd my-ai-app
pnpm install ai

Add your AWS Credentials to .env

Create a .env file in your project root and add your AWS credentials:


Create a Route Handler

Create a Next.js Route Handler that generates a response to a series of messages via AWS Bedrock's API, and returns the response as a streaming text response.

For this example, we'll use the Anthropic model anthropic.claude-v2 and create a route handler at app/api/chat/route.ts that accepts a POST request with a messages array of strings:

import {
} from '@aws-sdk/client-bedrock-runtime';
import { AWSBedrockAnthropicStream, StreamingTextResponse } from 'ai';
import { experimental_buildAnthropicPrompt } from 'ai/prompts';
const bedrockClient = new BedrockRuntimeClient({
region: process.env.AWS_REGION ?? 'us-east-1',
credentials: {
accessKeyId: process.env.AWS_ACCESS_KEY_ID ?? '',
secretAccessKey: process.env.AWS_SECRET_ACCESS_KEY ?? '',
export async function POST(req: Request) {
// Extract the `prompt` from the body of the request
const { messages } = await req.json();
// Ask Claude for a streaming chat completion given the prompt
const bedrockResponse = await bedrockClient.send(
new InvokeModelWithResponseStreamCommand({
modelId: 'anthropic.claude-v2',
contentType: 'application/json',
accept: 'application/json',
body: JSON.stringify({
prompt: experimental_buildAnthropicPrompt(messages),
max_tokens_to_sample: 300,
// Convert the response into a friendly text-stream
const stream = AWSBedrockAnthropicStream(bedrockResponse);
// Respond with the stream
return new StreamingTextResponse(stream);

Vercel AI SDK provides 2 utility helpers to make the above seamless: First, we pass the streaming bedrockResponse we receive from AWS Bedrocks's API to AWSBedrockAnthropicStream. This utility class decodes/extracts the text tokens in the response and then re-encodes them properly for simple consumption. We can then pass that new stream directly to StreamingTextResponse. This is another utility class that extends the normal Node/Edge Runtime Response class with the default headers you probably want (hint: 'Content-Type': 'text/plain; charset=utf-8' is already set for you).

Wire up the UI

Create a Client component with a form that we'll use to gather the prompt from the user and then stream back the completion from. By default, the useChat hook will use the POST Route Handler we created above (it defaults to /api/chat). You can override this by passing a api prop to useChat({ api: '...'}).

'use client';
import { useChat } from 'ai/react';
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<div className="mx-auto w-full max-w-md py-24 flex flex-col stretch">
{messages.map(m => (
<div key={m.id}>
{m.role === 'user' ? 'User: ' : 'AI: '}
<form onSubmit={handleSubmit}>
Say something...
className="fixed w-full max-w-md bottom-0 border border-gray-300 rounded mb-8 shadow-xl p-2"
<button type="submit">Send</button>