Skip to content
Docs
useCompletion

useCompletion

useCompletion(options: UseCompletionOptions): CompletionHelpers

useCompletion is a utility designed to handle text completion and the state of prompt inputs. This tool is useful when you need to integrate text completion capabilities into your application, with the UI updated automatically as new tokens are received from the API endpoint via streaming.

To use useCompletion in React projects, you can import it from the ai/react subpath. Here's an example demonstrating the use of useCompletion in a simple text completion interface:

app/completion.tsx
'use client';
 
import { useCompletion } from 'ai/react';
 
export default function Completion() {
  const {
    completion,
    input,
    stop,
    isLoading,
    handleInputChange,
    handleSubmit,
  } = useCompletion({
    api: '/api/completion',
  });
 
  return (
    <div>
      <form onSubmit={handleSubmit}>
        <input
          value={input}
          placeholder="Enter your prompt..."
          onChange={handleInputChange}
        />
        <p>Completion result: {completion}</p>
        <button type="button" onClick={stop}>
          Stop
        </button>
        <button disabled={isLoading} type="submit">
          Submit
        </button>
      </form>
    </div>
  );
}

UseCompletionOptions

OptionTypeDescription
apistring = '/api/completion'The API endpoint that accepts a `{ prompt: string }` object and returns a stream of tokens for the AI completion response. Defaults to `/api/completion`.
idstringAn unique identifier for the completion. If not provided, a random one will be generated. When provided, the `useCompletion` hook with the same `id` will have shared states across components. This is useful when you have multiple components showing the same chat stream
initialInputstring = ''An optional string for the initial prompt input.
initialCompletionstring = ''An optional string for the initial completion result.
onResponse(res: Response) => voidAn optional callback function that is called with the response from the API endpoint. Useful for throwing customized errors or logging.
onFinish(prompt: string, completion: string) => voidAn optional callback function that is called when the completion stream ends.
onError(err: Error) => voidAn optional callback that will be called when the chat stream encounters an error
headersRecord<string, string> | HeadersAn optional object of headers to be passed to the API endpoint.
bodyanyAn optional, additional body object to be passed to the API endpoint.
credentials"omit" | "same-origin" | "include"An optional literal that sets the mode of credentials to be used on the request. Defaults to "same-origin".
sendExtraMessageFieldsbooleanAn optional boolean that determines whether to send extra fields you've added to `messages`. Defaults to `false` and only the `content` and `role` fields will be sent to the API endpoint.

UseCompletionHelpers

The useCompletion hook returns an object with several helper methods and variables to manage the completion state:

OptionTypeDescription
completionstringThe current text completion.
complete(prompt: string, options: { headers, body }) => voidFunction to execute text completion based on the provided prompt.
errorundefined | ErrorThe error thrown during the completion process, if any.
setCompletion(completion: string) => voidFunction to update the `completion` state.
stop() => voidFunction to abort the current API request.
inputstringThe current value of the input field.
setInputReact.Dispatch<React.SetStateAction<string>>Function to update the `input` value.
handleInputChange(e: any) => voidHandler for the `onChange` event of the input field to control the input's value.
handleSubmit(e: React.FormEvent<HTMLFormElement>) => voidForm submission handler that automatically resets the input field and appends a user message.
isLoadingbooleanBoolean flag indicating whether a fetch operation is currently in progress.

Example: Building a Spell Check

Here is an example of how to use useCompletion to build a simple blog post spell checker that reports typos via the requested structured output.

app/page.tsx
'use client';
 
import { useCompletion } from 'ai/react';
import { useState, useCallback } from 'react';
 
export default function PostEditorPage() {
  // Locally store our blog posts content
  const [content, setContent] = useState('');
  const { complete } = useCompletion({
    api: '/api/completion',
  });
 
  const checkAndPublish = useCallback(
    async (c: string) => {
      const completion = await complete(c);
      if (!completion) throw new Error('Failed to check typos');
      const typos = JSON.parse(completion);
      // you should add more validation here to make sure the response is valid
      if (typos?.length && !window.confirm('Typos found… continue?')) return;
      else alert('Post published');
    },
    [complete],
  );
 
  return (
    <div>
      <h1>Post Editor</h1>
      <textarea value={content} onChange={e => setContent(e.target.value)} />
      <button onClick={() => checkAndPublish(content)}>Publish</button>
    </div>
  );
}

In the code snippet above, we define a React component PostEditor that utilizes a custom prompt and the complete function to request a JSON string from an AI model.

The server API formats the prompt for the AI model, and then it uses the OpenAIStream and StreamingTextResponse utilities to stream the response back to the client.

app/api/completion/route.ts
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';
 
export const runtime = 'edge';
 
const openai = new OpenAI({
  apiKey: process.env.OPENAI_API_KEY!,
});
 
export async function POST(req: Request) {
  // Extract the `prompt` from the body of the request
  const { prompt } = await req.json();
 
  // Request the OpenAI API for the response based on the prompt
  const response = await openai.chat.completions.create({
    model: 'gpt-3.5-turbo',
    stream: true,
    // a precise prompt is important for the AI to reply with the correct tokens
    messages: [
      {
        role: 'user',
        content: `Given the following post content, detect if it has typo or not. 
Respond with a JSON array of typos ["typo1", "typo2", ...] or an empty [] if there's none. Only respond with an array. Post content:
${prompt}
        
Output:\n`,
      },
    ],
    max_tokens: 200,
    temperature: 0, // you want absolute certainty for spell check
    top_p: 1,
    frequency_penalty: 1,
    presence_penalty: 1,
  });
 
  const stream = OpenAIStream(response);
 
  return new StreamingTextResponse(stream);
}

© 2023 Vercel Inc.