AI SDK CoregenerateObject
generateObject()
Generates a typed, structured object for a given prompt and schema using a language model.
It can be used to force the language model to return structured data, e.g. for information extraction, synthetic data generation, or classification tasks.
Example: generate an object using a schema
import { openai } from '@ai-sdk/openai';import { generateObject } from 'ai';import { z } from 'zod';
const { object } = await generateObject({ model: openai('gpt-4-turbo'), schema: z.object({ recipe: z.object({ name: z.string(), ingredients: z.array(z.string()), steps: z.array(z.string()), }), }), prompt: 'Generate a lasagna recipe.',});
console.log(JSON.stringify(object, null, 2));
Example: generate an array using a schema
For arrays, you specify the schema of the array items.
import { openai } from '@ai-sdk/openai';import { generateObject } from 'ai';import { z } from 'zod';
const { object } = await generateObject({ model: openai('gpt-4-turbo'), output: 'array', schema: z.object({ name: z.string(), class: z .string() .describe('Character class, e.g. warrior, mage, or thief.'), description: z.string(), }), prompt: 'Generate 3 hero descriptions for a fantasy role playing game.',});
Example: generate an enum
When you want to generate a specific enum value, you can set the output strategy to enum
and provide the list of possible values in the enum
parameter.
import { generateObject } from 'ai';
const { object } = await generateObject({ model: yourModel, output: 'enum', enum: ['action', 'comedy', 'drama', 'horror', 'sci-fi'], prompt: 'Classify the genre of this movie plot: ' + '"A group of astronauts travel through a wormhole in search of a ' + 'new habitable planet for humanity."',});
Example: generate JSON without a schema
import { openai } from '@ai-sdk/openai';import { generateObject } from 'ai';
const { object } = await generateObject({ model: openai('gpt-4-turbo'), output: 'no-schema', prompt: 'Generate a lasagna recipe.',});
To see generateObject
in action, check out the additional examples.
Import
import { generateObject } from "ai"
API Signature
Parameters
model:
LanguageModel
The language model to use. Example: openai('gpt-4-turbo')
output:
'object' | 'array' | 'enum' | 'no-schema' | undefined
The type of output to generate. Defaults to 'object'.
mode:
'auto' | 'json' | 'tool'
The mode to use for object generation. Not every model supports all modes. Defaults to 'auto' for 'object' output and to 'json' for 'no-schema' output. Must be 'json' for 'no-schema' output.
schema:
Zod Schema | JSON Schema
The schema that describes the shape of the object to generate. It is sent to the model to generate the object and used to validate the output. You can either pass in a Zod schema or a JSON schema (using the `jsonSchema` function). In 'array' mode, the schema is used to describe an array element. Not available with 'no-schema' or 'enum' output.
schemaName:
string | undefined
Optional name of the output that should be generated. Used by some providers for additional LLM guidance, e.g. via tool or schema name. Not available with 'no-schema' or 'enum' output.
schemaDescription:
string | undefined
Optional description of the output that should be generated. Used by some providers for additional LLM guidance, e.g. via tool or schema name. Not available with 'no-schema' or 'enum' output.
enum:
string[]
List of possible values to generate. Only available with 'enum' output.
system:
string
The system prompt to use that specifies the behavior of the model.
prompt:
string
The input prompt to generate the text from.
messages:
Array<CoreSystemMessage | CoreUserMessage | CoreAssistantMessage | CoreToolMessage> | Array<UIMessage>
A list of messages that represent a conversation. Automatically converts UI messages from the useChat hook.
CoreSystemMessage
role:
'system'
The role for the system message.
content:
string
The content of the message.
CoreUserMessage
role:
'user'
The role for the user message.
content:
string | Array<TextPart | ImagePart | FilePart>
The content of the message.
TextPart
type:
'text'
The type of the message part.
text:
string
The text content of the message part.
ImagePart
type:
'image'
The type of the message part.
image:
string | Uint8Array | Buffer | ArrayBuffer | URL
The image content of the message part. String are either base64 encoded content, base64 data URLs, or http(s) URLs.
mimeType?:
string
The mime type of the image. Optional.
FilePart
type:
'file'
The type of the message part.
data:
string | Uint8Array | Buffer | ArrayBuffer | URL
The file content of the message part. String are either base64 encoded content, base64 data URLs, or http(s) URLs.
mimeType:
string
The mime type of the file.
CoreAssistantMessage
role:
'assistant'
The role for the assistant message.
content:
string | Array<TextPart | ToolCallPart>
The content of the message.
TextPart
type:
'text'
The type of the message part.
text:
string
The text content of the message part.
ToolCallPart
type:
'tool-call'
The type of the message part.
toolCallId:
string
The id of the tool call.
toolName:
string
The name of the tool, which typically would be the name of the function.
args:
object based on schema
Parameters generated by the model to be used by the tool.
CoreToolMessage
role:
'tool'
The role for the assistant message.
content:
Array<ToolResultPart>
The content of the message.
ToolResultPart
type:
'tool-result'
The type of the message part.
toolCallId:
string
The id of the tool call the result corresponds to.
toolName:
string
The name of the tool the result corresponds to.
result:
unknown
The result returned by the tool after execution.
isError?:
boolean
Whether the result is an error or an error message.
maxTokens?:
number
Maximum number of tokens to generate.
temperature?:
number
Temperature setting. The value is passed through to the provider. The range depends on the provider and model. It is recommended to set either `temperature` or `topP`, but not both.
topP?:
number
Nucleus sampling. The value is passed through to the provider. The range depends on the provider and model. It is recommended to set either `temperature` or `topP`, but not both.
topK?:
number
Only sample from the top K options for each subsequent token. Used to remove "long tail" low probability responses. Recommended for advanced use cases only. You usually only need to use temperature.
presencePenalty?:
number
Presence penalty setting. It affects the likelihood of the model to repeat information that is already in the prompt. The value is passed through to the provider. The range depends on the provider and model.
frequencyPenalty?:
number
Frequency penalty setting. It affects the likelihood of the model to repeatedly use the same words or phrases. The value is passed through to the provider. The range depends on the provider and model.
seed?:
number
The seed (integer) to use for random sampling. If set and supported by the model, calls will generate deterministic results.
maxRetries?:
number
Maximum number of retries. Set to 0 to disable retries. Default: 2.
abortSignal?:
AbortSignal
An optional abort signal that can be used to cancel the call.
headers?:
Record<string, string>
Additional HTTP headers to be sent with the request. Only applicable for HTTP-based providers.
experimental_telemetry?:
TelemetrySettings
Telemetry configuration. Experimental feature.
TelemetrySettings
isEnabled?:
boolean
Enable or disable telemetry. Disabled by default while experimental.
recordInputs?:
boolean
Enable or disable input recording. Enabled by default.
recordOutputs?:
boolean
Enable or disable output recording. Enabled by default.
functionId?:
string
Identifier for this function. Used to group telemetry data by function.
metadata?:
Record<string, string | number | boolean | Array<null | undefined | string> | Array<null | undefined | number> | Array<null | undefined | boolean>>
Additional information to include in the telemetry data.
experimental_providerMetadata?:
Record<string,Record<string,JSONValue>> | undefined
Optional metadata from the provider. The outer key is the provider name. The inner values are the metadata. Details depend on the provider.
Returns
object:
based on the schema
The generated object, validated by the schema (if it supports validation).
finishReason:
'stop' | 'length' | 'content-filter' | 'tool-calls' | 'error' | 'other' | 'unknown'
The reason the model finished generating the text.
usage:
CompletionTokenUsage
The token usage of the generated text.
CompletionTokenUsage
promptTokens:
number
The total number of tokens in the prompt.
completionTokens:
number
The total number of tokens in the completion.
totalTokens:
number
The total number of tokens generated.
request?:
RequestMetadata
Request metadata.
RequestMetadata
body:
string
Raw request HTTP body that was sent to the provider API as a string (JSON should be stringified).
response?:
ResponseMetadata
Response metadata.
ResponseMetadata
id:
string
The response identifier. The AI SDK uses the ID from the provider response when available, and generates an ID otherwise.
model:
string
The model that was used to generate the response. The AI SDK uses the response model from the provider response when available, and the model from the function call otherwise.
timestamp:
Date
The timestamp of the response. The AI SDK uses the response timestamp from the provider response when available, and creates a timestamp otherwise.
headers?:
Record<string, string>
Optional response headers.
warnings:
Warning[] | undefined
Warnings from the model provider (e.g. unsupported settings).
experimental_providerMetadata:
Record<string,Record<string,JSONValue>> | undefined
Optional metadata from the provider. The outer key is the provider name. The inner values are the metadata. Details depend on the provider.
toJsonResponse:
(init?: ResponseInit) => Response
Converts the object to a JSON response. The response will have a status code of 200 and a content type of `application/json; charset=utf-8`.