OpenAI
Vercel AI SDK provides a set of utilities to make it easy to use OpenAI's API. In this guide, we'll walk through how to use the utilities to create a chat bot and a text completion app.
Guide: Chat Bot
Create a Next.js app
Create a Next.js application and install ai
and openai
, the Vercel AI SDK and OpenAI API client respectively:
pnpm dlx create-next-app my-ai-app
cd my-ai-app
pnpm install ai openai
Add your OpenAI API Key to .env
Create a .env
file in your project root and add your OpenAI API Key:
OPENAI_API_KEY=xxxxxxxxx
Create a Route Handler
Create a Next.js Route Handler that uses the Edge Runtime that we'll use to generate a chat completion via OpenAI that we'll then stream back to our Next.js.
For this example, we'll create a route handler at app/api/chat/route.ts
that accepts a POST
request with a messages
array of strings:
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';
// Create an OpenAI API client (that's edge friendly!)
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
// IMPORTANT! Set the runtime to edge
export const runtime = 'edge';
export async function POST(req: Request) {
const { messages } = await req.json();
// Ask OpenAI for a streaming chat completion given the prompt
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo',
stream: true,
messages,
});
// Convert the response into a friendly text-stream
const stream = OpenAIStream(response);
// Respond with the stream
return new StreamingTextResponse(stream);
}
Vercel AI SDK provides 2 utility helpers to make the above seamless: First, we
pass the streaming response
we receive from OpenAI to
OpenAIStream
. This method
decodes/extracts the text tokens in the response and then re-encodes them
properly for simple consumption. We can then pass that new stream directly to
StreamingTextResponse
. This
is another utility class that extends the normal Node/Edge Runtime Response
class with the default headers you probably want (hint: 'Content-Type': 'text/plain; charset=utf-8'
is already set for you).
Wire up the UI
Create a Client component with a form that we'll use to gather the prompt from the user and then stream back the completion from.
By default, the useChat
hook will use the POST
Route Handler we created above (it defaults to /api/chat
). You can override this by passing a api
prop to useChat({ api: '...'})
.
'use client';
import { useChat } from 'ai/react';
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<div className="flex flex-col w-full max-w-md py-24 mx-auto stretch">
{messages.map(m => (
<div key={m.id} className="whitespace-pre-wrap">
{m.role === 'user' ? 'User: ' : 'AI: '}
{m.content}
</div>
))}
<form onSubmit={handleSubmit}>
<input
className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl"
value={input}
placeholder="Say something..."
onChange={handleInputChange}
/>
</form>
</div>
);
}
Guide: Text Completion
Use the Completion API
Similar to the Chat Bot example above, we'll create a Next.js Route Handler that generates a text completion via OpenAI that we'll then stream back to our Next.js. It accepts a POST
request with a prompt
string:
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';
// Create an OpenAI API client (that's edge friendly!)
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
// IMPORTANT! Set the runtime to edge
export const runtime = 'edge';
export async function POST(req: Request) {
// Extract the `prompt` from the body of the request
const { prompt } = await req.json();
// Ask OpenAI for a streaming completion given the prompt
const response = await openai.completions.create({
model: 'gpt-3.5-turbo-instruct',
max_tokens: 2000,
stream: true,
prompt,
});
// Convert the response into a friendly text-stream
const stream = OpenAIStream(response);
// Respond with the stream
return new StreamingTextResponse(stream);
}
Wire up the UI
We can use the useCompletion
hook to make it easy to wire up the UI. By default, the useCompletion
hook will use the POST
Route Handler we created above (it defaults to /api/completion
). You can override this by passing a api
prop to useCompletion({ api: '...'})
.
'use client';
import { useCompletion } from 'ai/react';
export default function Chat() {
const { completion, input, handleInputChange, handleSubmit, error } =
useCompletion();
return (
<div className="flex flex-col w-full max-w-md py-24 mx-auto stretch">
<h4 className="text-xl font-bold text-gray-900 md:text-xl pb-4">
useCompletion Example
</h4>
{error && (
<div className="fixed top-0 left-0 w-full p-4 text-center bg-red-500 text-white">
{error.message}
</div>
)}
{completion}
<form onSubmit={handleSubmit}>
<input
className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl"
value={input}
placeholder="Say something..."
onChange={handleInputChange}
/>
</form>
</div>
);
}
Guide: Handling Errors
The OpenAI's API throws an OpenAI.APIError
when an error occurs during a request. It is recommended to wrap your API calls in a try/catch
block to handle these errors. For more information about OpenAI.APIError
, see OpenAI SDK Handling Errors (opens in a new tab).
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';
import { NextResponse } from 'next/server';
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
export const runtime = 'edge';
export async function POST(req: Request) {
// Wrap with a try/catch to handle API errors
try {
const { messages } = await req.json();
const response = await openai.chat.completions.create({
model: 'gpt-3.5-turbo',
stream: true,
messages,
});
const stream = OpenAIStream(response);
return new StreamingTextResponse(stream);
} catch (error) {
// Check if the error is an APIError
if (error instanceof OpenAI.APIError) {
const { name, status, headers, message } = error;
return NextResponse.json({ name, status, headers, message }, { status });
} else {
throw error;
}
}
}
Guide: Save to Database After Completion
It’s common to want to save the result of a completion to a database after streaming it back to the user. The OpenAIStream
adapter accepts a couple of optional callbacks that can be used to do this.
export async function POST(req: Request) {
// ...
// Convert the response into a friendly text-stream
const stream = OpenAIStream(response, {
onStart: async () => {
// This callback is called when the stream starts
// You can use this to save the prompt to your database
await savePromptToDatabase(prompt);
},
onToken: async (token: string) => {
// This callback is called for each token in the stream
// You can use this to debug the stream or save the tokens to your database
console.log(token);
},
onCompletion: async (completion: string) => {
// This callback is called when the stream completes
// You can use this to save the final completion to your database
await saveCompletionToDatabase(completion);
},
});
// Respond with the stream
return new StreamingTextResponse(stream);
}
Guide: Use with Azure OpenAI Service
You can pass custom options to the Configuration
from the OpenAI package to connect to the an Azure instance.
See the OpenAI client repository (opens in a new tab) for a more complete example.
import OpenAI from 'openai';
const resource = '<your resource name>';
const model = '<your model>';
const apiKey = process.env.AZURE_OPENAI_API_KEY;
if (!apiKey) {
throw new Error('AZURE_OPENAI_API_KEY is missing from the environment.');
}
// Azure OpenAI requires a custom baseURL, api-version query param, and api-key header.
const openai = new OpenAI({
apiKey,
baseURL: `https://${resource}.openai.azure.com/openai/deployments/${model}`,
defaultQuery: { 'api-version': '2023-06-01-preview' },
defaultHeaders: { 'api-key': apiKey },
});
Note: Before the release of openai@4
, we previously recommended using the
openai-edge
library because of it's compatibility with Vercel Edge Runtime.
The OpenAI SDK now supports Edge Runtime out of the box, so we recommend using
the official openai
library instead.
Guide: Using Images with GPT 4 Vision and useChat
You can use the extra data
property that is part of handleSubmit
to send additional data
such as an image URL or a base64 encoded image to the server
'use client';
import { useChat } from 'ai/react';
export default function Chat() {
const { messages, input, handleInputChange, handleSubmit } = useChat();
return (
<div className="flex flex-col w-full max-w-md py-24 mx-auto stretch">
{messages.length > 0
? messages.map(m => (
<div key={m.id} className="whitespace-pre-wrap">
{m.role === 'user' ? 'User: ' : 'AI: '}
{m.content}
</div>
))
: null}
<form
onSubmit={e => {
handleSubmit(e, {
data: {
imageUrl:
'https://upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Field_sparrow_in_CP_%2841484%29_%28cropped%29.jpg/733px-Field_sparrow_in_CP_%2841484%29_%28cropped%29.jpg',
},
});
}}
>
<input
className="fixed bottom-0 w-full max-w-md p-2 mb-8 border border-gray-300 rounded shadow-xl"
value={input}
placeholder="What does the image show..."
onChange={handleInputChange}
/>
</form>
</div>
);
}
On the server, you can pass that information to GPT-4 Vision.
import OpenAI from 'openai';
import { OpenAIStream, StreamingTextResponse } from 'ai';
// Create an OpenAI API client (that's edge friendly!)
const openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY,
});
// IMPORTANT! Set the runtime to edge
export const runtime = 'edge';
export async function POST(req: Request) {
// 'data' contains the additional data that you have sent:
const { messages, data } = await req.json();
const initialMessages = messages.slice(0, -1);
const currentMessage = messages[messages.length - 1];
// Ask OpenAI for a streaming chat completion given the prompt
const response = await openai.chat.completions.create({
model: 'gpt-4-vision-preview',
stream: true,
max_tokens: 150,
messages: [
...initialMessages,
{
...currentMessage,
content: [
{ type: 'text', text: currentMessage.content },
// forward the image information to OpenAI:
{
type: 'image_url',
image_url: data.imageUrl,
},
],
},
],
});
// Convert the response into a friendly text-stream
const stream = OpenAIStream(response);
// Respond with the stream
return new StreamingTextResponse(stream);
}